
Expression Language Features of PVS

Ben L. Di Vito

NASA Langley Research Center

Formal Methods Team

b.divito@nasa.gov
phone: (757) 864-4883

fax: (757) 864-4234

http://shemesh.larc.nasa.gov/people/bld

NASA Langley – NIA Short Course on PVS

27–30 November 2007

Expressions

PVS allows many operators and constructors for use in forming expressions

• Equality relations

• Arithmetic expressions

• Logical expressions, formulas

• Conditional expressions

• Function application

• Lambda abstraction

• Override expressions

• Record construction, component access

• Tuple construction, component access

• LET and WHERE expressions

• Set expressions

• Lists and strings

• Pattern matching on data types

• Name resolution

Every expression must be properly typed

• Typechecker emits TCCs if it’s unsure

Nov 2007 — 1 / 22

Equality relations

Equality operations are defined for any type

• Two operators available:

x = y

z /= 7

• Both sides of an equality/inequality must be of compatible types

x * y = 4 is valid

true /= 4 is illegal

• A (dis)equality is legal if there is a common supertype

• TCCs may be generated when subtypes are involved

• Equality on function values entails special techniques when proving

– Use of extensionality inference rule:

(∀x ∈ D : f(x) = g(x)) ⊃ f = g

– Logic notation:

P ⊃ Q means P ⇒ Q (P implies Q)

Nov 2007 — 2 / 22

Arithmetic Expressions

PVS has the usual assortment of arithmetic operations

• Relational operators:

<, <=, >, >=

• Binary operators:

+, -, *, /, ^

• Unary operators:

-

• Numeric constants are limited to integers and rationals

– Decimal point format is available

– Can bound or approximate reals using rational numbers

– Examples: 1/2, 22/7, 3.14, 0.621

• Base type for arithmetic is real

– Subtypes built in for naturals, integers, etc.

– Automatic coercions performed when needed

Nov 2007 — 3 / 22

Logical Expressions and Formulas

Logical expressions may be used to construct both propositional and predicate calculus

formulas

• Logical constants: true and false

• Propositional connectives:

– Negation: NOT

– Conjunction: AND, &

– Disjunction: OR

– Implication: =>, IMPLIES

– Equivalence: <=>, IFF

• Quantified formulas:

– Universal: FORALL x: P(x), also with ALL

– Existential: EXISTS x: Q(x), also with SOME

• A few other synonyms and operators are available

Nov 2007 — 4 / 22

Conditional Expressions

Conditional expressions come in two basic varieties

• IF expressions:

IF a THEN b ELSE c ENDIF

• Evaluates to either b or c according to the value of boolean expression a

• Subexpressions b and c must have compatible types

• Type of resulting expression is the common supertype of b and c

• The ELSE clause is not optional

• Also can have multiple tests and branches:

IF x < 0 THEN -1 ELSIF x = 0 THEN 0 ELSE 1 ENDIF

• Can include any number of ELSIF clauses

Nov 2007 — 5 / 22

Conditional Expressions (Cont’d)

• COND expressions:

COND m = n -> n,
m > n -> gcd(m - n, n),
m < n -> gcd(m, n - m)

ENDCOND

• Allows multiway conditional evaluation similar to IF expressions containing ELSIF clauses

• PVS generates coverage and disjointness TCCs to ensure expression is well formed

– Disjointness: at most one case applies

– Coverage: at least one case applies

• COND expressions are used in table-based specifications

Nov 2007 — 6 / 22

Tabular Expressions

Complex conditional expressions can be put in the form of tables:

TABLE %---%
|[m = n | m > n | m < n]|
%---%
| n | gcd(m - n, n) | gcd(m, n - m) ||
%---%

ENDTABLE

• Semantically equivalent to COND expressions

• More complex forms also available

• Can directly express many types of tables used in practice

• Well-formedness analysis is available through TCC mechanism

Nov 2007 — 7 / 22

Function Application

Function application can be a little more involved than normal when higher-order features are

present

• Basic function application:

f(x) a - b g(y, z) h(0, f(a)) + 1

• Infix operators can be applied in prefix style

+(x, y) *(y, -(z, 1))

• Expressions can evaluate to functions, which are then applied to other expressions

f: [nat -> [real -> real]] allows f(1)(x)

g: [nat,nat -> [real -> real]] allows g(2,3)(h(z))

h: [nat,real -> [bool,int -> real]] allows h(0, f(a))(true, 39)

• Signatures of functions and corresponding types are used to sort things out

• Function being applied could be given as the value of a variable, which looks the same as

regular application

f(x), g(y, z) if f and g are variables of suitable function types

Nov 2007 — 8 / 22

Lambda Abstraction

Lambda expressions allow writing function-valued expressions without having to explicitly

introduce named functions

• Typical examples:

LAMBDA j: 0

LAMBDA i: table(i)

LAMBDA x,y: x + 2 * y

LAMBDA (p: prime): 2^p - 1

• Evaluates to a function of n arguments with a signature derived from the argument types

and expression types

• Lambda expressions can be used wherever a function value of the appropriate type is used

– As part of defining expressions for larger functions

– As a value supplied to data structure update operations

– As the function being applied to one or more arguments

– Example: (LAMBDA (p: prime): 2^p - 1)(3) = 7

• Lambda expressions pop up a lot because of PVS’s orientation toward function types and

higher-order logic

Nov 2007 — 9 / 22

Function Overriding

Another way to construct new function values is to override/update an existing function

value to create a new one

• Examples of basic forms:

f WITH [(0) := 2, (1) := 3]

table WITH [(i) := g(i)]

matrix WITH [(i)(j) := x * y]

r WITH [‘a := 1, ‘b(1)‘c := 0]

• Each evaluates to a new function formed from the original that differs on one or more

elements of its domain

• A form using symbol |-> extends domain of function, resulting in a different type

f WITH [(-1) |-> g(0)]

• Useful for specifying state-changing operations on large data objects

• Meaning is best visualized by considering function update and then application:

(f WITH [(i) := a])(j) =
IF i = j THEN a ELSE f(j) ENDIF

Nov 2007 — 10 / 22

Record Operations

PVS has facilities for record construction, field selection, and updates

• Record construction:

(# ready := true, timestamp := T + 1, count := 0 #)

• Field selection is similar to the familiar r.ready notation from programming languages:

IF r‘ready THEN r‘timestamp ELSE 0 ENDIF

• Field selection is also possible using function application:

IF ready(r) THEN timestamp(r) ELSE 0 ENDIF

• Record update:

r WITH [ready := false, timestamp := current]

– Evaluates to r with two of its fields updated as indicated

Nov 2007 — 11 / 22

Tuple Operations

Tuple construction, field selection, and updates are similar to those of records

• Tuple construction:

(true, T + 1, 0)

• Tuple selection is similar to record field selection:

IF t‘1 THEN t‘2 ELSE 0 ENDIF

• Tuple update:

t WITH [‘1 := false, ‘2 := current]

– Evaluates to t with two of its components updated as indicated

Nov 2007 — 12 / 22

LET and WHERE Expressions

Two expression types are used to introduce named subexpressions

• Basic form:

LET x = 2, y: nat = x * x IN f(x, y) + y

• LET variables are local to the LET expression

• Within the IN part, variables denote values as if the subexpressions were substituted in

their place

• WHERE form is analogous:

f(x, y) + y WHERE x = 2, y: nat = x * x

• There is also a tuple form to implicitly name components:

LET (x, y, z) = t IN x + y * z

• LET and WHERE expressions are useful for modeling sequential computation steps

• LET is more typical but WHERE is useful with tables

Nov 2007 — 13 / 22

Misc. Expressions

Several other expression types are available in PVS

• Coercions alert the typechecker to type membership

a/b :: int

– Assuming b divides a

• Sets are represented in PVS as predicates over a base type

• Set expressions:

{n: int | n < 10}

– Equivalent to LAMBDA (n: int): n < 10

• List constructors:

(: 1, 2, 3, 4 :)

– Equivalent to cons(1, cons(2, ... null))

• String constants:

– "A character string"

Nov 2007 — 14 / 22

Pattern Matching on Data Types

A special construct is available for working with abstract data types

• The CASES construct enables a kind of “pattern matching” on DATATYPE-introduced

values

CASES list OF
cons(elt, rest): append(reverse(rest),

cons(elt, null))
ELSE null

ENDCASES

• Allows conditional selection of alternative expressions

– Based on the form of a value with respect to its DATATYPE definition

– One clause per constructor

Nov 2007 — 15 / 22

Extensible Syntax and Semantics

PVS supports several ways to enhance flexibility and expressibility

• Function names may be overloaded

– Types of arguments are used to disambiguate function instances

– Predefined as well as user-defined functions may be overloaded

– Even infix operators such as + and * may be overloaded

• Also, the identifier o is available as a user-definable operator

– Example: fs1 o (fs2 o fs3) = (fs1 o fs2) o fs3

• Several “outfix” operators are available as well

– Three bracket pairs: [| |] (| |) {| |}

– Function definition example:

[||] (a,b,c): real = (a + b + c) / 3

– Use in an expression:

avg_123: LEMMA [| 1,2,3 |] = 2

Nov 2007 — 16 / 22

Name Resolution

When names have been imported from multiple theories, name conflicts or ambiguity may

result

• The same name may be imported from different theories

• Or, the same name may be imported from different theory instances

• Three ways to reference “name” declared in theory “thy”:

1. name
2. name[params]
3. thy[params].name

• Method 1 works when there are no conflicts

• Method 2 works for some clashes

• Method 3 is guaranteed to be unambiguous

Nov 2007 — 17 / 22

Function Declaration

Named functions are declared using the constant declaration mechanism

• A function is simply a constant whose type is a function type

• As with simple data constants, function declarations may be either interpreted or

uninterpreted

• Typical uninterpreted function declarations:

abs(x): nat

max: [int, int -> int]

ordered(s: num_list): bool

• Note these are equivalent:

gcd: [nat, nat -> nat]

gcd(m: nat, n: nat): nat

• Note a subtle difference:

scalar_mult(a, v: vector): real

scalar_mult(a, (v: vector)): real

• Such undefined (uninterpreted) functions may be referenced freely in PVS specifications

– But there is nothing to expand during proofs

Nov 2007 — 18 / 22

Function Definition

Functions are defined by giving interpreted function declarations

• Typical function definitions:

abs(x): nat = IF x < 0 THEN -x ELSE x ENDIF

time(m: minute, s: second): nat = m * 60 + s

device_busy(d: control_block): bool = NOT d‘ready

scalar_mult(a, V): vector = LAMBDA i: a * V(i)

• Type of defining expression must be contained in declared result type of function

• Result type may be any PVS type

• Function types allowed for arguments and result

• Recursive definitions allowed with special syntax provided

– But no mutual recursion across two or more definitions

• Rules are designed to ensure conservative extension of theory

• Macros are a variant of constant/function declarations

– They are expanded at typecheck time

Nov 2007 — 19 / 22

Recursive Function Definitions

Recursive definitions have a special form

• Recursion must be signaled so the system can check for well-foundedness of the

definition, i.e, that recursion is always bounded

factorial(n): RECURSIVE nat =
IF n = 0 THEN 1 ELSE n * factorial(n-1) ENDIF

MEASURE LAMBDA n: n

• A measure function must be provided

– Measure must strictly decrease on every recursive call

– Termination TCCs may be generated if this cannot be established

– Shortcuts allowed for simple measures: MEASURE n

• A special form also exists to deal with DATATYPE situations

• Inductive definitions are a related concept

Nov 2007 — 20 / 22

Formula Declarations

Various kinds of logical formulas may be included in a theory

• A formula declaration is a named logical formula (boolean expression)

transitive: AXIOM x < y AND y < z => x < z

distrib_law: LEMMA x * (y + z) = x * y + x * z

friendly_skies: THEOREM
mode(aircraft) = cruise IMPLIES
altitude(aircraft) > 1000

• Formulas may contain free variables

– PVS assumes the universal closure:

FORALL x,y,z: x * (y + z) = x * y + x * z

• Declared formulas may be submitted to the theorem prover

– PVS tracks the proof status of formulas

• Multiple spellings available

– LEMMA, THEOREM, CONJECTURE, etc.

– All semantically equivalent except AXIOM and POSTULATE

Nov 2007 — 21 / 22

Special Formulas about Types

PVS allows special formulas to specify type attributes of function applications

• Judgements are lemmas about (sub)types that get applied automatically during type

checking

– They can obviate many TCCs that would otherwise be generated

• Constant judgements can narrow the type of an expression

even_plus_even_is_even: JUDGEMENT +(e1,e2) HAS_TYPE even_int

odd_plus_even_is_odd: JUDGEMENT +(o1,e2) HAS_TYPE odd_int

• Subtype judgements express type relationships

JUDGEMENT posrat SUBTYPE_OF nzrat

JUDGEMENT nzrat SUBTYPE_OF nzreal

• Possible interactions with various type conversion features

– Extensions, restrictions, etc.

Nov 2007 — 22 / 22

